

Chapter 33:

Respiratory Acid-Base Disorders

Table of Contents

Part 1 Physiology

Overview of total body fluid distribution, water balance, and electrolyte compartments.

Chapter 1

Part 2 Basics of Intravenous Fluids and Solutions

Introduction to crystalloids and colloids, their composition, clinical use, precautions, and contraindications.

Chapter 2-5

Part 3 Fluid Replacement Strategies

Principles of fluid therapy, including maintenance, resuscitation, and special considerations for the elderly.

Chapter 6-9

Part 4 Parenteral Additives

Composition, clinical applications, and precautions for various parenteral additives.

Chapter 10-14

Part 5 Hemodynamic Monitoring

Principles and techniques for assessing fluid status and cardiac output, using basic and advanced methods.

Chapter 15-19

Part 6 Electrolyte Disorders

Causes, presentation, diagnosis, and management of various electrolyte imbalances.

Chapter 20-29

Part 7 Acid-Base Disorders

Concepts, interpretation, and management of metabolic and respiratory acid-base disorders.

Chapter 30-33

Part 8 Fluid Therapy in Medical Disorders

Guidelines for fluid management in conditions like GI diseases, liver disorders, respiratory issues, and diabetic emergencies.

Chapter 34-41

<u>Part 9 Fluid Therapy in Surgical</u> Disorders

Fluid management before, during, and after surgery, including TURP syndrome and burns.

Chapter 42-47

Part 10 Fluid Therapy in Pediatrics

Special considerations for fluid management in children and neonates, including resuscitation, maintenance, and oral rehydration.

Chapter 48-50

Part 11 Fluid Therapy in Obstetrics

Fluid management strategies for pregnancy, cesarean delivery, preeclampsia, and labor-related hyponatremia.

Chapter 51-54

Part 12 Parenteral Nutrition

Principles, indications, and administration of parenteral nutrition, with disease-specific guidelines and complication management.

Chapter 55-57

Respiratory Acid-Base Disorders

RESPIRATORY ACIDOSIS	391
Definition and basic	
understanding	391
Renal compensation	391
Respiratory acidosis vs.	
metabolic alkalosis	392
Relation between hypercapnia	
and hypoxemia	392
Etiology	392
Clinical features	392
Diagnosis	393
History	393
Physical examination	393
Investigations	393

Treatment	. 395
General measures	. 395
Oxygen therapy	. 395
Ventilatory support	. 396
Alkali therapy	. 396
RESPIRATORY ALKALOSIS	. 397
Definition and basic	
understanding	. 397
Renal compensation	. 397
Etiology	. 397
Clinical features	. 397
Diagnosis	. 398
Troatmont	200

Respiratory acidosis and respiratory alkalosis are the two primary respiratory acid-base disorders commonly encountered in clinical practice, both resulting from primary changes in pCO₂ due to various disorders.

RESPIRATORY ACIDOSIS

DEFINITION AND BASIC UNDERSTANDING

Respiratory acidosis, also known as primary hypercapnia, is a clinical disorder characterized by a primary elevation in the $PaCO_2$ (>45 mmHg) leading to a reduction in pH (<7.35) and variable compensatory increase in the plasma

HCO₃ concentration.

Respiratory acidosis occurs when the effective alveolar ventilation (CO_2 excretion by the lung) fails to keep pace with the rate of CO_2 production. Acute respiratory acidosis occurs rapidly within <48 hours, while chronic respiratory acidosis develops slowly over days to weeks (>48 hours).

Renal compensation

Respiratory acidosis leads to renal compensation through increased urinary H^+ secretion, resulting in acidic urine. This gradual process leads to a rise in plasma HCO_3 levels, mitigating acidosis. Because renal compensation is a slow process, the compensatory increase in HCO_3 is

small in acute respiratory acidosis. In contrast, in chronic respiratory acidosis, the compensatory rise in HCO_3 is more substantial over time due to robust and prolonged renal compensation.

Acute respiratory acidosis: Every 10 mm of Hg rise in $PaCO_2$ causes 1 mEq/L rise in HCO_3 and 0.1 fall in pH.

Chronic respiratory acidosis: Every 10 mm Hg rise in $PaCO_2$ causes a 4 mEq/L rise in HCO_3 and a 0.03 fall in pH.

Serum HCO_3 usually does not exceed 38 mEq/L due to compensation. If HCO_3 is >38 mEq/L, think of concomitant metabolic alkalosis.

Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India. 2017;34(1):47–60.
- Palmer BF, Clegg DJ. Respiratory Acidosis and Respiratory Alkalosis: Core Curriculum 2023. Am J Kidney Dis. 2023;82(3):347–359.
- Adrogué HJ, Madias NE. Management of Life-Threatening Acid–Base Disorders. N Engl J Med. 1998;338(1):26–34.
- Boatright JE, Jensen MQ. Therapeutic Gases: Management and Administration. In: Hess DR, MacIntyre NR, Galvin WF, editors. Respiratory Care: Principles and Practice, 4th edition. Jones & Bartlett Learning, LLC, an Ascend Learning Company; 2021. Chapter 14, pages 285–320.
- Theerawit P, Soipetkasem P. An importance of respiratory drive and effort during mechanical ventilation: Respiratory drive and effort in respiratory failure. Clin Crit Care [Internet]. 2023;31(1):2023:e0001.
- Rocker G. Harms of over oxygenation in patients with exacerbation of chronic obstructive pulmonary disease. CMAJ. 2017;189(22):E762–E763.
- Sarkar M, Madabhavi I, Kadakol N. Oxygeninduced hypercapnia: physiological mechanisms and clinical implications. Monaldi Arch Chest Dis. 2023;93(3):2399.
- 8. O'Driscoll BR, Howard LS, Earis J, et al. BTS guideline for oxygen use in adults in healthcare

- and emergency settings. Thorax 2017;72(Suppl 1):ii1-ii90.
- Echevarria C, Steer J, Wason J, et al. Oxygen therapy and inpatient mortality in COPD exacerbation. Emerg Med J. 2021;38(3):170–7.
- Barnett A, Beasley R, Buchan C, et al. Thoracic Society of Australia and New Zealand Position Statement on Acute Oxygen Use in Adults: 'Swimming between the flags'. Respirology. 2022;27(4):262–276.
- Fujishima S. Guideline-based management of acute respiratory failure and acute respiratory distress syndrome. J Intensive Care. 2023;11(1):10.
- Austin MA, Wills KE, Blizzard L, et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomized controlled trial. BMJ 2010;341:e5462.
- Adrogué HJ, Madias NE. Alkali Therapy for Respiratory Acidosis: A Medical Controversy. Am J Kidney Dis. 2020;75(2):265–271.
- Chand R, Swenson ER, Goldfarb DS. Sodium bicarbonate therapy for acute respiratory acidosis. Curr Opin Nephrol Hypertens. 2021;30(2):223–230.
- Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol. 2021;183:114278.
- Sanghavi S, Albert TJ, Swenson ER. ACID-BASE BALANCE. In: Broaddus VC, Ernst JD, King TE Jr, editors. Murray & Nadel's Textbook of Respiratory

- Medicine. Seventh Edition. Elsevier Health Sciences Division; 2021. Chapter 12, page 166.
- Laffey JG, Kavanagh BP. Hypocapnia. N Engl J Med. 2002;347(1):43–53.
- 18. Mazzara JT, Ayres SM, Grace WJ. Extreme hypocapnia in the critically ill patient. Am J Med. 1974;56(4):450–6.
- 19. Foster GT, Varizi ND, Sassoon CS. Respiratory alkalosis. Respir Care. 2001;46(4):384–91.
- Callaham M. Hypoxic hazards of traditional paper bag rebreathing in hyperventilating patients. Ann Emerg Med 1989;18(6):622–8.
- Burtscher M, Gatterer H, Faulhaber M, et al. Acetazolamide pre-treatment before ascending to high altitudes: when to start? Int J Clin Exp Med. 2014;7(11):4378–83.

Join the Mission to Fight Kidney Diseases

Explore the world's largest multilingual website created by a global team of over 100 nephrologists.

www.KidneyEducation.com

- » Read online or download the 200-page book"Save Your Kidneys" in 40 languages—completely free.
- » This comprehensive resource offers valuable information on preventing and managing common kidney problems, tailored for kidney patients and their families.
- » It's an authentic guide, prepared by nephrologists and free from any external funding.