

Chapter 28:

Hypomagnesemia

Table of Contents

Part 1 Physiology

Overview of total body fluid distribution, water balance, and electrolyte compartments.

Chapter 1

Part 2 Basics of Intravenous Fluids and Solutions

Introduction to crystalloids and colloids, their composition, clinical use, precautions, and contraindications.

Chapter 2-5

Part 3 Fluid Replacement Strategies

Principles of fluid therapy, including maintenance, resuscitation, and special considerations for the elderly.

Chapter 6-9

Part 4 Parenteral Additives

Composition, clinical applications, and precautions for various parenteral additives.

Chapter 10-14

Part 5 Hemodynamic Monitoring

Principles and techniques for assessing fluid status and cardiac output, using basic and advanced methods.

Chapter 15-19

Part 6 Electrolyte Disorders

Causes, presentation, diagnosis, and management of various electrolyte imbalances.

Chapter 20-29

Part 7 Acid-Base Disorders

Concepts, interpretation, and management of metabolic and respiratory acid-base disorders.

Chapter 30-33

Part 8 Fluid Therapy in Medical Disorders

Guidelines for fluid management in conditions like GI diseases, liver disorders, respiratory issues, and diabetic emergencies.

Chapter 34-41

Part 9 Fluid Therapy in Surgical Disorders

Fluid management before, during, and after surgery, including TURP syndrome and burns. **Chapter 42-47**

Part 10 Fluid Therapy in Pediatrics

Special considerations for fluid management in children and neonates, including resuscitation, maintenance, and oral rehydration.

Chapter 48-50

Part 11 Fluid Therapy in Obstetrics

Fluid management strategies for pregnancy, cesarean delivery, preeclampsia, and labor-related hyponatremia.

Chapter 51-54

Part 12 Parenteral Nutrition

Principles, indications, and administration of parenteral nutrition, with disease-specific guidelines and complication management.

Chapter 55-57

28 Hypomagnesemia

Basic Physiology	326
HYPOMAGNESEMIA	328
Etiology	328
Clinical Features	328
Diagnosis	330
History and physical examination	330
Routinely ordered investigations	330
Urinary magnesium excretion	330

Management	330
Correction of underlying etiology	330
Basic principles of therapy	331
Replacement of magnesium	332
Mild hypomagnesemia	332
Moderate hypomagnesemia	332
Severe hypomagnesemia	332
Parenteral magnesium therapy	333

SERUM MAGNESIUM

Disorder of magnesium, especially hypomagnesemia, is expected particularly in ICU patients and usually occurs due to renal and gastrointestinal (GI) losses. However, hypermagnesemia is a less frequent disorder than hypomagnesemia, and its most common cause is renal failure.

BASIC PHYSIOLOGY

 Magnesium is the fourth most common cation of the body (after Na⁺, K⁺, and Ca^{2+}), the second most common intracellular cation (after K⁺), and the commonest intracellular divalent cation.

Distribution: About 60% of body magnesium is in bones, 39% is within the cells, and only 1% is in extracellular fluid (ECF). Up to 40% of total plasma magnesium is protein-bound, 5–10% is in complex form, and about 50–55% is in a free, ionized form, which is a biologically active ion (like calcium).

Table 28.1 Interpretation of serum magnesium concentration								
Hypomagnesemia			Normal	Hypermagnesemia				
Severe	Moderate	Mild	range	Mild	Moderate	Severe		
<1.0 mg/dL	1.0-1.5 mg/dL	1.6-1.9 mg/dL	1.7-2.1 mg/dL	4.8-7.2 mg/dL	7.2-12 mg/dL	>12 mg/dL		
<0.5 mmol/L	0.4-0.6 mmol/L	0.7-0.8 mmol/L	0.70-0.85 mmol/L	2.0-3.0 mmol/L	3.0-5.0 mmol/L	>5 mmol/L		
<0.8 mEq/L	0.8-1.2 mEq/L	1.4-1.6 mEq/L	1.4-1.7 mEq/L	4.0-6.0 mEq/L	6.0-10 mEq/L	>10 mEq/L		
Conversion factors for serum magnesium: 1 mEq/L = 1.2 mg/dL = 0.5 mmol/L								

To get a copy of the book, visit: www.fluidtherapy.org

- Normal blood ranges: The normal serum magnesium level is 1.7 to 2.1 mg/dL (0.70 to 0w.85 mmol/L, 1.4 to 1.7 mEq/L), and their values in magnesium disorders are summarized in Table 28.1.
- As the clinical effects of magnesium disorders are determined primarily by tissue magnesium content, serum magnesium levels have limited diagnostic value.

Want to read more?

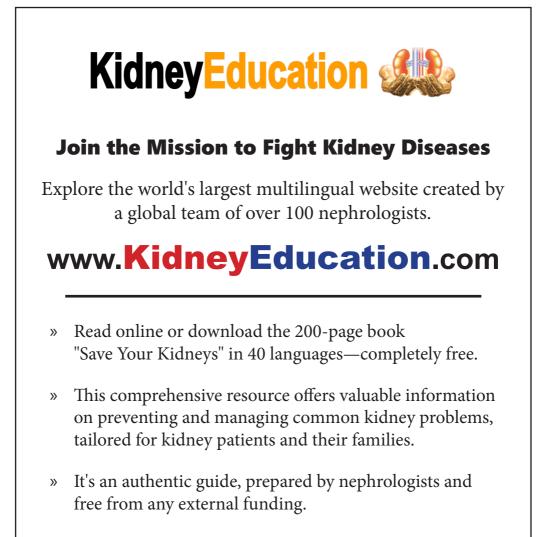
Get Printed Version

Get Kindle Version

REFERENCES

- de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46.
- Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(1):i3–i14.
- Fatemi S, Ryzen E, Flores J, et al. Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J Clin Endocrinol Metab 1991;73(5):1067–72.
- Lindsay AL, Bazydlo, Needham M, et al. Calcium, Magnesium, and Phosphate, Laboratory Medicine 2014;45(1):e44–e50.
- Eisenbud E, LoBue CC. Hypocalcemia after therapeutic use of magnesium sulfate. Arch Intern Med 1976;136(6):688–91.
- Rodríguez-Ortiz ME, Canalejo A, Herencia C, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29(2):282–9.
- Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257–1272.
- Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47–66.
- 9. Yee J. Magnesium: An Important Orphan. Adv Chronic Kidney Dis. 2018;25(3):217–221.
- Schuchardt JP, Hahn A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium-An Update. Curr Nutr Food Sci. 2017;13(4):260–278.
- 11. Curry JN, Yu ASL. Magnesium Handling

in the Kidney. Adv Chronic Kidney Dis. 2018;25(3):236-243.


- Martin KJ, González EA, Slatopolsky E. Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol. 2009;20(11):2291–5.
- Wong ET, Rude RK, Singer FR, et al. A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients. Am J Clin Pathol. 1983;79(3):348–352.
- Limaye CS, Londhey VA, Nadkart MY, et al. Hypomagnesemia in critically ill medical patients. J Assoc Physicians India. 2011;59:19–22.
- Cheungpasitporn W, Thongprayoon C, Qian Q. Dysmagnesemia in Hospitalized Patients: Prevalence and Prognostic Importance. Mayo Clin Proc. 2015;90(8):1001–10.
- Cheungpasitporn W, Thongprayoon C, Chewcharat A, et al. Hospital-Acquired Dysmagnesemia and In-Hospital Mortality. Med Sci (Basel). 2020;8(3):37.
- M Kumar A, Naik MK. Prevalence of admission hypomagnesemia in critically ill patients International Journal of Health and Clinical Research, 2021;4(2):129–133.
- Van Laecke S. Hypomagnesemia and hypermagnesemia. Acta Clin Belg. 2019;74(1):41–47.
- Liamis G, Liberopoulos E, Alexandridis G, et al. Hypomagnesemia in a department of internal medicine. Magnes Res. 2012;25(4):149–58.
- Whang R, Ryder KW. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA 1990;263(22):3063–4.
- Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.

- 22. Pham PC, Pham PM, Pham SV, et al. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2007;2(2):366–73.
- Chrysant SG, Chrysant GS. Association of hypomagnesemia with cardiovascular diseases and hypertension. Int J Cardiol Hypertens. 2019;1:100005.
- Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler Thromb Vasc Biol. 2017;37(8):1431–1445.
- Assadi F. Hypomagnesemia: an evidence-based approach to clinical cases. Iran J Kidney Dis. 2010;4(1):13–19.
- Tucker BM, Pirkle JL Jr, Raghavan R. Urinary Magnesium in the Evaluation of Hypomagnesemia. JAMA. 2020;324(22):2320–2321.
- Velissaris D, Karamouzos V, Pierrakos C, et al. Hypomagnesemia in Critically Ill Sepsis Patients. J Clin Med Res. 2015;7(12):911–8.
- Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.
- 29. Hansen BA, Bruserud Ø. Hypomagnesemia in critically ill patients. J Intensive Care. 2018;6:21.
- Chonchol M, Smogorzewski MJ, Stubbs JR, et al. Disorders of Calcium, Magnesium, and Phosphate Balance. In: Brenner and Rector's The Kidney, 11th ed, Yu A, Chertow G, Luyckx V, et al (Eds), W.B.

Saunders & Company, Philadelphia 2020.p.603.

- Fulop T. Hypomagnesemia treatment & management. Updated Oct 30, 2020. Available at https://emedicine. medscape.com/article/2038394-treatment#d10 (accessed 18 January 2022).
- 32. Kraft MD, Btaiche IF, Sacks GS, et al. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm. 2005;62(16):1663–82.
- 33. Neumar RW, Otto CW, Link MS, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S729–67.
- Tzivoni D, Banai S, Schuger C, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988;77(2):392–7.
- 35. Hammond DA, Stojakovic J, Kathe N, et al. Effectiveness and Safety of Magnesium Replacement in Critically III Patients Admitted to the Medical Intensive Care Unit in an Academic Medical Center: A Retrospective, Cohort Study. J Intensive Care Med. 2019;34(11–12):967–972.
- McDonnell NJ, Muchatuta NA, Paech MJ. Acute magnesium toxicity in an obstetric patient undergoing general anaesthesia for caesarean delivery. Int J Obstet Anesth. 2010;19(2):226–31.

