

Chapter 24:

Hypocalcemia

Table of Contents

Part 1 Physiology

Overview of total body fluid distribution, water balance, and electrolyte compartments.

Chapter 1

Part 2 Basics of Intravenous Fluids and Solutions

Introduction to crystalloids and colloids, their composition, clinical use, precautions, and contraindications.

Chapter 2-5

Part 3 Fluid Replacement Strategies

Principles of fluid therapy, including maintenance, resuscitation, and special considerations for the elderly.

Chapter 6-9

Part 4 Parenteral Additives

Composition, clinical applications, and precautions for various parenteral additives.

Chapter 10-14

Part 5 Hemodynamic Monitoring

Principles and techniques for assessing fluid status and cardiac output, using basic and advanced methods.

Chapter 15-19

Part 6 Electrolyte Disorders

Causes, presentation, diagnosis, and management of various electrolyte imbalances.

Chapter 20-29

Part 7 Acid-Base Disorders

Concepts, interpretation, and management of metabolic and respiratory acid-base disorders.

Chapter 30-33

Part 8 Fluid Therapy in Medical Disorders

Guidelines for fluid management in conditions like GI diseases, liver disorders, respiratory issues, and diabetic emergencies.

Chapter 34-41

Part 9 Fluid Therapy in Surgical Disorders

Fluid management before, during, and after surgery, including TURP syndrome and burns.

Chapter 42-47

Part 10 Fluid Therapy in Pediatrics

Special considerations for fluid management in children and neonates, including resuscitation, maintenance, and oral rehydration.

Chapter 48-50

Part 11 Fluid Therapy in Obstetrics

Fluid management strategies for pregnancy, cesarean delivery, preeclampsia, and labor-related hyponatremia.

Chapter 51-54

Part 12 Parenteral Nutrition

Principles, indications, and administration of parenteral nutrition, with disease-specific guidelines and complication management.

Chapter 55-57

24 Hypocalcemia

Basic Physiology	288
Distribution	288
Serum calcium	288
Ionized calcium	289
Corrected total calcium	289
Regulation	289
Role of parathyroid hormone	289
Role of vitamin D	290
Role of calcitonin	290
Calcium sensing receptor system	290
Effect of pH	290
Effect of phosphate and	
magnesium level	291
HYPOCALCEMIA	
Etiology	291
Postsurgical	291
Vitamin D deficiency	292
Acute pancreatitis	292
Clinical Features	292

Diagnosis	292
History and physical examination	293
Confirm the diagnosis	293
Measure serum PTH	293
Measure serum phosphate,	
magnesium, and vitamin D status	293
Order other tests	293
Management	293
Acute management	294
Emergency therapy	294
Calcium gluconate infusion	295
Monitoring	295
Calcium chloride	295
Massive transfusion	295
Precautions	295
Long term management	296
Calcium supplementation	296
Vitamin D supplementation	297
Treatment of underlying etiology	297

BASIC PHYSIOLOGY

Calcium (Ca) is essential for bone formation, neuromuscular function, and blood coagulation. If calcium intake is inadequate, it may impair bone mineralization in children and accelerate bone loss in adults.

Distribution

An average adult's body contains 20 to 25 gm/kg or 1.2 to 1.4 kg of calcium,

so it is the most abundant cation in the body. Out of this, about 99% is present in the bone, 1% in the soft tissue cells, and 0.15% in the extracellular fluid (ECF). As serum calcium concentration constitutes less than 1% of the total body calcium, it is a poor marker of overall total body calcium content.

Serum calcium

The normal value is about 8.5 to 10.5 mg/dL (4.3 to 5.2 mEq/L, 2.2 to 2.6 mmol/L).

The total ECF calcium exists in three forms:

- Bound to proteins: About 40% of calcium is bound to protein (mainly albumin) which will not be diffusible and biologically active.
- Free-ionized: 50% of calcium is in an ionized form which is diffusible and

- biologically active.
- 3. Bound to anions: 10% calcium is complexed with the anions of organic acids such as phosphate, bicarbonate, citrate, lactate, or sulfate phosphate. This form of calcium is diffusible but biologically inactive.

Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- Steen O, Clase C, Don-Wauchope A. Corrected calcium formula in routine clinical use does not accurately reflect ionized calcium in hospital patients. Can J Gen Int Med. 2016;11(3):14–21.
- Lian IA, Asberg A. Should total calcium be adjusted for albumin? A retrospective observational study of laboratory data from central Norway. BMJ Open. 2018;8(4):e017703.
- Kenny CM, Murphy CE, Boyce DS, et al. Things We Do for No Reason™: Calculating a "Corrected Calcium" Level. J Hosp Med. 2021;16(8):499–501.
- Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol. 2016;7:563.
- Witteveen JE, van Thiel S, Romijn JA, et al. Hungry bone syndrome: still a challenge in the post-operative management of primary hyperparathyroidism: a systematic review of the literature. Eur J Endocrinol. 2013;168(3):R45–53.
- Kaya C, Tam AA, Dirikoç A, et al. Hypocalcemia development in patients operated for primary hyperparathyroidism: Can it be predicted preoperatively? Arch Endocrinol Metab. 2016;60(5):465-471.
- 7. Jain N, Reilly RF. Hungry bone syndrome. Curr Opin Nephrol Hypertens. 2017;26(4):250–255.
- Kelly A, Levine MA. Hypocalcemia in the critically ill patient. J Intensive Care Med. 2013;28(3):166–77.
- Ahmed A, Azim A, Gurjar M, et al. Hypocalcemia in acute pancreatitis revisited. Indian J Crit Care Med. 2016;20(3):173–177.

- 10. Cooper MS, Gittoes NJL. Diagnosis and management of hypocalcaemia. BMJ 2008;336:1298–1302.
- 11. Pepe J, Colangelo L, Biamonte F, et al. Diagnosis and management of hypocalcemia. Endocrine. 2020;69(3):485–495.
- Kakava K, Tournis S, Papadakis G, et al. Postsurgical Hypoparathyroidism: A Systematic Review. In Vivo. 2016;30(3):171–9.
- Augustine M, Horwitz MJ. Are You Sure the Patient Has Hypocalcemia? Hypocalcemia Endocrinology Metabolism, Endocrinology Adviser February 4, 2019. Accessed on 27 Nov 2021: https://www.endocrinologyadvisor.com/author/mara-j-horwitz-dsm/.
- 14. Walsh J, Gittoes N, Selby P. Society for Endocrinology Endocrine Emergency Guidance: Emergency management of acute hypocalcemia in adult patients. Endocr Connect. 2016;5(5):G9–G11.
- 15. Bove-Fenderson E, Mannstadt M. Hypocalcemic disorders. Best Pract Res Clin Endocrinol Metab. 2018;32(5):639–656.
- Byerly S, Inaba K, Biswas S, et al. Transfusion-Related Hypocalcemia After Trauma. World J Surg. 2020;44(11):3743–3750.
- Hall C, Nagengast AK, Knapp C, et al. Massive transfusions and severe hypocalcemia: An opportunity for monitoring and supplementation guidelines. Transfusion. 2021;61:S188–S194.
- Kyle T, Greaves I, Beynon A, et al. Ionised calcium levels in major trauma patients who received blood en route to a military medical treatment facility. Emerg Med J. 2018;35(3):176–179.
- 19. Fong J, Khan A. Hypocalcemia: updates in diagnosis

- and management for primary care. Can Fam Physician. 2012;58(2):158-62.
- Mannstadt M, Clarke BL, Vokes T, et al. Efficacy and safety of recombinant human parathyroid hormone (1–84) in hypoparathyroidism (REPLACE): a doubleblind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol 2013;1(4):275–83.
- Vokes TJ, Mannstadt M, Levine MA, et al. Recombinant Human Parathyroid Hormone Effect on Health-Related Quality of Life in Adults with Chronic Hypoparathyroidism. J Clin Endocrinol
- Metab. 2018;103(2):722-731.
- 22. Mannstadt M, Clarke BL, Bilezikian JP, et al. Safety and efficacy of 5 years of treatment with recombinant human parathyroid hormone in adults with hypoparathyroidism. J Clin Endocrinol Metab. 2019;104(11):5136–5147.
- 23. Laurer E, Grünberger J, Naidoo U, et al. Recombinant human parathyroid hormone (1–84) replacement therapy in a child with hypoparathyroidism. Bone. 2021;144:115834.

Join the Mission to Fight Kidney Diseases

Explore the world's largest multilingual website created by a global team of over 100 nephrologists.

www.KidneyEducation.com

- » Read online or download the 200-page book"Save Your Kidneys" in 40 languages—completely free.
- » This comprehensive resource offers valuable information on preventing and managing common kidney problems, tailored for kidney patients and their families.
- » It's an authentic guide, prepared by nephrologists and free from any external funding.