

Chapter 22: Hypokalemia

Table of Contents

Part 1 Physiology

Overview of total body fluid distribution, water balance, and electrolyte compartments.

Chapter 1

Part 2 Basics of Intravenous Fluids and Solutions

Introduction to crystalloids and colloids, their composition, clinical use, precautions, and contraindications.

Chapter 2-5

Part 3 Fluid Replacement Strategies

Principles of fluid therapy, including maintenance, resuscitation, and special considerations for the elderly.

Chapter 6-9

Part 4 Parenteral Additives

Composition, clinical applications, and precautions for various parenteral additives.

Chapter 10-14

Part 5 Hemodynamic Monitoring

Principles and techniques for assessing fluid status and cardiac output, using basic and advanced methods.

Chapter 15-19

Part 6 Electrolyte Disorders

Causes, presentation, diagnosis, and management of various electrolyte imbalances.

Chapter 20-29

Part 7 Acid-Base Disorders

Concepts, interpretation, and management of metabolic and respiratory acid-base disorders.

Chapter 30-33

Part 8 Fluid Therapy in Medical Disorders

Guidelines for fluid management in conditions like GI diseases, liver disorders, respiratory issues, and diabetic emergencies.

Chapter 34-41

Part 9 Fluid Therapy in Surgical Disorders

Fluid management before, during, and after surgery, including TURP syndrome and burns. **Chapter 42-47**

Part 10 Fluid Therapy in Pediatrics

Special considerations for fluid management in children and neonates, including resuscitation, maintenance, and oral rehydration.

Chapter 48-50

Part 11 Fluid Therapy in Obstetrics

Fluid management strategies for pregnancy, cesarean delivery, preeclampsia, and labor-related hyponatremia.

Chapter 51-54

Part 12 Parenteral Nutrition

Principles, indications, and administration of parenteral nutrition, with disease-specific guidelines and complication management.

Chapter 55-57

22 Hypokalemia

POTASSIUM

Physiological Basis	254
Potassium Homeostasis	255
Regulation of Serum Potassium	255
Correlation of Serum and Body Potassium	256

HYPOKALEMIA

Etiology	256
Clinical Features and ECG	
Changes	258
Diagnosis	258
History and physical examination	259
Laboratory evaluation	259
Additional diagnostic tests	259
Urinary potassium excretion	259
Acid-base status	261
Management	261
Goals	261
Prevention	261

Replenishment of potassium deficit
Estimation of the potassium deficit262
Selection of treatment modality262
Precautions262
How much and how long 263
Oral potassium supplementation 263
Intravenous potassium
supplementation 264
Selection of formulations 264
Potassium containing IV fluids 264
Indications 264
Recommendations for
administration 264
Special considerations
The target of K ⁺ supplementation 266
Correction of the underlying
causes 266

POTASSIUM

PHYSIOLOGICAL BASIS

Potassium (K⁺) is a major intracellular cation and the second most abundant cation in the body (next to cation sodium). Total body potassium is about 3,500 mEq. Out of this, 98% of potassium is intracellular, and just 2% of potassium is extracellular. Thus, the normal serum potassium concentration is 3.5 to 5.0 mEq/L vs. an intracellular 140 to 150 mEq/L. Potassium plays a crucial role in the following:

- Normal functioning of cells: Synthesis of DNA and protein, cell division and growth, and enzyme function.
- Neuromuscular transmission: Maintaining cell membrane potential, cellular excitability, conduction of nerve impulses which help in maintaining skeletal, cardiac, and smooth muscle cell contraction.

To get a copy of the book, visit: www.fluidtherapy.org

- Regulate intracellular osmolality and cell volume.
- Maintain acid-base balance and regulate intracellular pH.

POTASSIUM HOMEOSTASIS

The average potassium intake is about

77 and 59 mEq per day in adult men and women, respectively [1]. 90% of potassium consumed is absorbed in the upper gastrointestinal (GI) tract, out of which kidneys excrete 90%, and the remaining 10% is excreted in the stool.

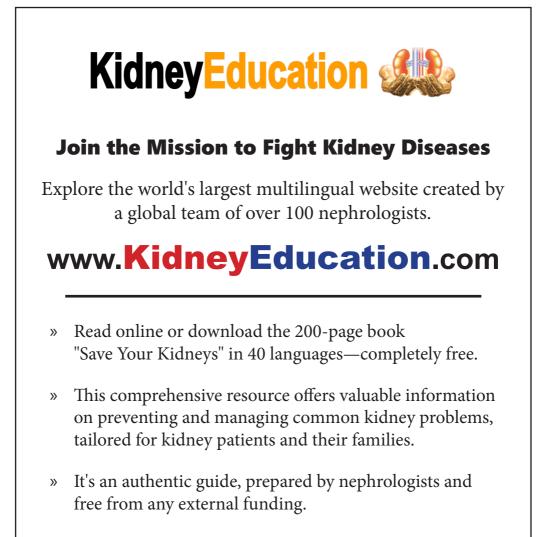
Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- 1. U.S. Department of Agriculture, Agricultural Research Service. What We Eat in America, 2013–2014.
- Rastegar A. Serum Potassium. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 195. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK307/.
- Palmer BF. Regulation of potassium homeostasis. Clinical Journal of the American Society of Nephrology 2015;10(6):1050–1060.
- Gumz ML, Rabinowitz L, Wingo CS. An Integrated View of Potassium Homeostasis. N Engl J Med. 2015;373(1):60–72.
- Kardalas E, Paschou SA, Anagnostis P, et al. Hypokalemia: a clinical update. Endocr Connect. 2018;7(4):R135–R146.
- Palmer BF, Clegg DJ. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am J Kidney Dis. 2019;74(5):682-695.
- Marti G, Schwarz C, Leichtle AB, et al. Etiology and symptoms of severe hypokalaemia in emergency department patients. European Journal of Emergency Medicine 2014;21(1):46–51.
- Viera AJ, Wouk N. Potassium Disorders: Hypokalemia and Hyperkalemia. Am Fam Physician. 2015;92(6):487–95.
- Aronson PS, Giebisch G. Effects of pH on potassium: new explanations for old observations. J Am Soc Nephrol. 2011;22(11):1981–1989.


- Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.
- Yalamanchili HB, Calp-Inal S, Zhou XJ, et al. Hypokalemic Nephropathy. Kidney Int Rep. 2018;3(6):1482–1488.
- 12. Levis JT. ECG diagnosis: hypokalemia. Perm J. 2012;16(2):57.
- Kishimoto C, Tamaru K, Kuwahara H. Tall P waves associated with severe hypokalemia and combined electrolyte depletion. J Electrocardiol. 2014;47(1):93–4.
- Wang X, Han D, Li G. Electrocardiographic manifestations in severe hypokalemia. J Int Med Res. 2020;48(1):300060518811058.
- 15. Krogager ML, Kragholm K, Thomassen JQ, et al. Update on management of hypokalaemia and goals for the lower potassium level in patients with cardiovascular disease: a review in collaboration with the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy, European Heart Journal - Cardiovascular Pharmacotherapy, 2021;pvab038.
- Groeneveld JH, Sijpkens YW, Lin SH, et al. An approach to the patient with severe hypokalaemia: the potassium quiz. QJM. 2005;98(4):305–16.
- 17. Abcar AC, Kujubu DA. Evaluation of hypertension with hypokalemia. Perm J. 2009;13(1):73–76.
- Jędrusik P, Symonides B, Wojciechowska E, et al. Diagnostic value of potassium level in a spot urine sample as an index of 24-hour urinary potassium excretion in unselected patients hospitalized in a hypertension unit. PLoS One. 2017;12(6):e0180117.

- Palmer BF, Clegg DJ. The Use of Selected Urine Chemistries in the Diagnosis of Kidney Disorders. Clin J Am Soc Nephrol. 2019;14(2):306–316.
- Grams ME, Hoenig MP, Hoorn EJ. Evaluation of Hypokalemia. JAMA. 2021;325(12):1216–1217.
- Kamel K, Halperin M. Intrarenal urea recycling leads to a higher rate of renal excretion of potassium: an hypothesis with clinical implications. Curr Opin Nephrol Hypertens 2011;20(5):547–54.
- 22. Halperin ML. Assessing the renal response in patients with potassium disorders: a shift in emphasis from the TTKG to the urine K+/creatinine ratio. Afr J Nephrol. 2017;20(1):22–24.
- Bourke E, Delaney V. Prevention of hypokalemia caused by diuretics. Heart Dis Stroke. 1994;3(2):63–7.
- 24. Cohn JN, Kowey PR, Whelton PK, et al. New Guidelines for Potassium Replacement in Clinical Practice: A Contemporary Review by the National Council on Potassium in Clinical Practice. Arch Intern Med. 2000;160(16):2429–2436.
- Scotto CJ, Fridline M, Menhart CJ, Klions HA. Preventing hypokalemia in critically ill patients. Am J Crit Care. 2014;23(2):145–9.
- 26. Gennari FJ. Hypokalemia. N Engl J Med 1998;339(7):451-458.
- Asmar A, Mohandas R, Wingo CS. A physiologicbased approach to the treatment of a patient with hypokalemia. Am J Kidney Dis. 2012;60(3):492–7.
- Farkas J. Hypokalemia. Internet Book of Critical Care (IBCC) June 25, 2021. Visit: https://emcrit.org/ibcc/ hypokalemia/.
- 29. Pasquel FJ, Tsegka K, Wang H, et al. Clinical outcomes in patients with isolated or combined

diabetic ketoacidosis and hyperosmolar hyperglycemic state: a retrospective, hospital-based cohort study. Diabetes Care 2020;43(3):349–57.

- Umpierrez GE, Murphy MB, Kitabchi AE. Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar Syndrome. Diabetes Spectrum 2002;15(1):28–36.
- Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32(7):1335–1343.
- Adrogué HJ, Lederer ED, Suki WN, Eknoyan G. Determinants of plasma potassium levels in diabetic ketoacidosis. Medicine (Baltimore) 1986;65(3):163–172.
- Pasquel FJ, Lansang MC, Dhatariya K, et al. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol. 2021;9(3):174–188.
- 34. Clase CM, Carrero JJ, Ellison DH, et al; Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020;97(1):42–61.
- 35. Wainwright NJ, Azim A, Neary JD. Proton Pump Inhibition in the Management of Hypokalemia in Anorexia Nervosa with Self-Induced Vomiting. Canadian Journal of General Internal Medicine 2018;13(3):35–38.
- Tella SH, Kommalapati A. Thyrotoxic Periodic Paralysis: An Underdiagnosed and Under-recognized Condition. Cureus. 2015;7(10):e342.

