

Chapter 10:

Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

Table of Contents

Part 1 Physiology

Overview of total body fluid distribution, water balance, and electrolyte compartments.

Chapter 1

Part 2 Basics of Intravenous Fluids and Solutions

Introduction to crystalloids and colloids, their composition, clinical use, precautions, and contraindications.

Chapter 2-5

Part 3 Fluid Replacement Strategies

Principles of fluid therapy, including maintenance, resuscitation, and special considerations for the elderly.

Chapter 6-9

Part 4 Parenteral Additives

Composition, clinical applications, and precautions for various parenteral additives.

Chapter 10-14

Part 5 Hemodynamic Monitoring

Principles and techniques for assessing fluid status and cardiac output, using basic and advanced methods.

Chapter 15-19

Part 6 Electrolyte Disorders

Causes, presentation, diagnosis, and management of various electrolyte imbalances.

Chapter 20-29

Part 7 Acid-Base Disorders

Concepts, interpretation, and management of metabolic and respiratory acid-base disorders.

Chapter 30-33

Part 8 Fluid Therapy in Medical Disorders

Guidelines for fluid management in conditions like GI diseases, liver disorders, respiratory issues, and diabetic emergencies.

Chapter 34-41

Part 9 Fluid Therapy in Surgical Disorders

Fluid management before, during, and after surgery, including TURP syndrome and burns.

Chapter 42-47

Part 10 Fluid Therapy in Pediatrics

Special considerations for fluid management in children and neonates, including resuscitation, maintenance, and oral rehydration.

Chapter 48-50

Part 11 Fluid Therapy in Obstetrics

Fluid management strategies for pregnancy, cesarean delivery, preeclampsia, and labor-related hyponatremia.

Chapter 51-54

Part 12 Parenteral Nutrition

Principles, indications, and administration of parenteral nutrition, with disease-specific guidelines and complication management.

Chapter 55-57

10 Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

CALCIUM GLUCONATE AND	
CALCIUM CHLORIDE	116
Composition	116
Pharmacological basis	116
Indications	116
Hyperkalemia	116
Hypocalcemia	117
Severe hypermagnesemia	117
Calcium-channel blocker	
overdose	118
β-blocker overdose	118
Prevent citrate toxicity	118

Hydrolluoric acid burns	. 119
Cardiac resuscitation	.119
Contraindications and precautions.	.119
HYPERTONIC DEXTROSE	
SOLUTIONS	120
Composition	120
Pharmacological basis	120
Indications	120
Contraindications	120
Adverse effects and cautions	120

Commonly used special solutions are calcium chloride, calcium gluconate, dextrose 25% and 50%, hypertonic

saline, magnesium sulfate, potassium chloride, potassium phosphate, and sodium bicarbonate (Table 10.1).

Table 10.1 Composition of commonly used special solutions					
Injection	Content in mEq/ml	Volume of amp (mL)	Content in mEq/amp	gm/10 ml amp	
Calcium gluconate 10%	$Ca^{2+} = 0.45$	10	Ca ²⁺ = 4.5/10 ml	1.0	
Calcium chloride 10%	$Ca^{2+} = 1.36$	10	Ca ²⁺ = 13.6/10 ml	1.0	
Hypertonic (3%) saline	$Na^{+} = 0.5$	100	Na+ = 51/100 ml	3.0	
Magnesium sulfate 50%	$Mg^{2+} = 4$	2.0	$Mg^{2+} = 8/2 \text{ ml}$	1.0	
Potassium chloride 15%	K ⁺ = 2.0	10	K+ = 20/10 ml	1.5	
Potassium phosphates	$K^{+} = 4.4$ $PH_{4} = 3.0$	15	K ⁺ = 66/15 ml PH ₄ = 45/15 ml	-	
7.5% NaHCO ₃	HCO ₃ = 0.9	10	HCO ₃ = 9/10 ml	0.75	
8.4% NaHCO ₃	HCO ₃ = 1.0	20	HCO ₃ = 10/10 ml	0.84	

HCO₃: Bicarbonate; Ca²⁺: Calcium; Mg²⁺: Magnesium; PH₄: Phosphate; K⁺: Potassium; Na⁺: Sodium; NaHCO3: Sodium bicarbonate

Chapter 10: Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

INJECTION CALCIUM GLUCONATE AND CALCIUM CHLORIDE

Inj. calcium gluconate and calcium chlo-

ride are two different salt forms commonly used in various emergency conditions.

Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- Davey M, Caldicott D. Calcium salts in management of hyperkalaemia. Emerg Med J. 2002;19(1):92–3.
- Long B, Warix JR, Koyfman A. Controversies in Management of Hyperkalemia. J Emerg Med. 2018;55(2):192–205.
- Semple P, Booth C. Calcium chloride; a reminder. Anaesthesia 1996;51(1):93.
- Weisberg LS. Management of severe hyperkalemia. Crit Care Med 2008;36(12):3246–51.
- Truhlar A, Deakin CD, Soar J, et al., European resuscitation council guidelines for resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation, 2015;95:148–201.
- Batterink J, Cessford TA, Taylor RAI. Pharmacological interventions for the acute management of hyperkalaemia in adults. Cochrane Database of Systematic Reviews 2015;10:CD010344.
- Robert T, Joseph A, Mesnard L. Calcium salt during hyperkalemia. Kidney Int. 2016;90(2):451–452.
- Wang CH, Huang CH, Chang WT, et al. The effects of calcium and sodium bicarbonate on severe hyperkalaemia during cardiopulmonary resuscitation: A retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation, 2016;98:105–11.
- 9. Vanden Hoek TL, Morrison LJ, Shuster M, et al. Part 12: cardiac arrest in special situations: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S829–S861.
- Helman A, Baimel M, Etchells E. Emergency management of hyperkalemia. Emergency Medicine Cases. 2016 https://emergencymedicinecases.com/ emergency-management-hyperkalemia/ Accessed 11 June 2020.

- Ahee P, Crowe AV. The management of hyperkalaemia in the emergency department. J Accid Emerg Med. 2000;17(3):188–191.
- Cooper MS, Gittoes NJL. Diagnosis and management of hypocalcaemia. BMJ 2008;336(7656):1298–1302.
- 13. Walsh J, Gittoes N, Selby P. Society for Endocrinology Endocrine Emergency Guidance: Emergency management of acute hypocalcemia in adult patients. Endocr Connect. 2016;5(5):G9–G11.
- Rietjens SJ, de Lange DW, Donker DW, et al. Practical recommendations for calcium channel antagonist poisoning. Neth J Med 2016;74(2):60–67.
- Graudins A, Lee H, Druda D. Calcium channel antagonist and beta-blocker overdose: Antidotes and adjunct therapies. Br J Clin Pharmacol 2016;81(3):453–461.
- St-Onge M, Anseeuw K, Cantrell FL, et al. Experts consensus recommendations for the management of calcium channel blockerpoisoning in adults. Crit Care Med. 2017;45(3):e306–e315.
- 17. Kumar K, Biyyam M, Bajantri B, et al. Critical management of severe hypotension caused by amlodipine toxicity managed with hyperinsulinemia/ euglycemia therapy supplemented with calcium gluconate, intravenous glucagon and other vasopressor support: Review of literature. Cardiol Res 2018;9(1):46–49.
- 18. Shah SK, Goswami SK, Babu RV, et al. Management of calcium channel antagonist overdose with hyperinsulinemia-euglycemia therapy: case series and review of the literature. Case Rep Crit Care. 2012;2012:927040.
- 19. Lima SK, Begum M, Gupta AK, et al. Management of Massive Blood Transfusion-a case study. Pulse 2014;5(1):39–43.

Chapter 10: Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

- Hess JR, Silvergleid AJ. Massive blood transfusion. In: Post TW, editor. UpToDate. Waltham, MA: Wolters Kluwer Health. http://www.uptodate.com. Accessed 12 Sept 2020.
- Basic-Jukic N, Kes P, Glavas-Boras S, et al. Complications of therapeutic plasma exchange: experience with 4857 treatments. Ther Apher Dial. 2005;9(5):391-5.
- Lee G, Arepally GM. Anticoagulation techniques in apheresis: from heparin to citrate and beyond. J Clin Apher. 2012;27(3):117–125.
- Sigler K, Lee J, Srivaths P. Regional citrate anticoagulation with calcium replacement in pediatric apheresis. J Clin Apher. 2018;33(3):274–7.
- Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice--evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010;25(3):83–177
- Patterson ER, Winters JL. Hemapheresis. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book. (23rd ed., pp. 779) St Louis, MO: Elsevier;2017.
- Weinstein R. Prevention of citrate reactions during therapeutic plasma exchange by constant infusion of calcium gluconate with the return fluid. J Clin Apher. 1996;11(4):204–210.
- Kankirawatana S, Huang ST, Marques MB. Continuous infusion of calcium gluconate in 5% albumin is safe and prevents most hypocalcemic reactions during therapeutic plasma exchange. J Clin Apher. 2007;22(5):265–269.
- Krishnan RG, Coulthard MG. Minimising changes in plasma calcium and magnesium concentrations during plasmapheresis. Pediatr Nephroly 2007;22(10):1763–1766.
- Section 5: Dialysis Interventions for Treatment of AKI. Kidney Int Suppl (2011). 2012;2(1):89–115.
- Oudemans-van Straaten HM, Ostermann M. Benchto-bedside review: Citrate for continuous renal replacement therapy, from science to practice. Crit Care 2012;16(6):249.
- Kindgen-Milles D, Brandenburger T, Dimski T. Regional citrate anticoagulation for continuous renal replacement therapy. Curr Opin Crit Care. 2018;24(6):450–4.
- Karkar A, Ronco C. Prescription of CRRT: a pathway to optimize therapy. Ann. Intensive Care 2020;10(1):32.

- Wu MY, Hsu YH, Bai CH, et al. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: A metaanalysis of randomized controlled trials. Am J Kidney Dis 2012;59(6):810–818.
- 34. Stucker F, Ponte B, Tataw J, et al. Efficacy and safety of citrate-based anticoagulation compared to heparin in patients with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Crit Care 2015;19(1):91.
- Liu C, Mao Z, Kang H, et al. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a metaanalysis with trial sequential analysis of randomized controlled trials. Crit Care. 2016;20(1):144.
- Davenport A, Tolwani A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus. 2009;2(6):439–447.
- 37. Morabito S, Pistolesi V, Tritapepe L, et al. Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16(3):R111.
- McKee D, Thoma A, Bailey K, et al. A review of hydrofluoric acid burn management. Plast Surg (Oakv). 2014;22(2):95–98.
- Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 6: advanced cardiovascular life support: section 6: pharmacology II: agents to optimize cardiac output and blood pressure. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation. 2000;102(8 Suppl):I129–135.
- Australian Resuscitation Council. Section 11 Adult advanced life support. ANZCOR Guideline 11.5 – Medications in Adult Cardiac Arrest August 2016 Available: https://resus.org.au/guidelines/.
- Morrison LJ, Deakin CD, Morley PT, et al. Part 8: Advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122(16 Suppl 2):S345–421.
- 42. Gin A, Walker S. Notice to Hospitals regarding Ceftriaxone-calcium incompatibility: What's a clinician to do? Can J Hosp Pharm. 2009;62(2):157–8.

Join the Mission to Fight Kidney Diseases

Explore the world's largest multilingual website created by a global team of over 100 nephrologists.

www.KidneyEducation.com

- » Read online or download the 200-page book"Save Your Kidneys" in 40 languages—completely free.
- » This comprehensive resource offers valuable information on preventing and managing common kidney problems, tailored for kidney patients and their families.
- » It's an authentic guide, prepared by nephrologists and free from any external funding.